CWE-119

Improper Restriction of Operations within the Bounds of a Memory Buffer
AI Translation Available

The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.

Status
stable
Abstraction
class
Likelihood
high
Assembly C C++ Memory-Unsafe

Common Consequences

integrity confidentiality availability
Impacts
execute unauthorized code or commands modify memory read memory dos: crash, exit, or restart dos: resource consumption (cpu) dos: resource consumption (memory)

Detection Methods

automated static analysis automated dynamic analysis automated static analysis - binary or bytecode manual static analysis - binary or bytecode dynamic analysis with automated results interpretation dynamic analysis with manual results interpretation manual static analysis - source code automated static analysis - source code architecture or design review

Potential Mitigations

Phases:
operation build and compilation implementation requirements architecture and design
Descriptions:
• Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
• Consider adhering to the following rules when allocating and managing an application's memory: - Double check that the buffer is as large as specified. - When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. - Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. - If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
• Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
• Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
• Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
• Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
• Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

Functional Areas

memory management