CWE-306

Missing Authentication for Critical Function
AI Translation Available

The product does not perform any authentication for functionality that requires a provable user identity or consumes a significant amount of resources.

Status
draft
Abstraction
base
Likelihood
high
Cloud Computing ICS/OT

Common Consequences

access control other
Impacts
gain privileges or assume identity varies by context

Detection Methods

manual analysis automated static analysis manual static analysis - binary or bytecode dynamic analysis with automated results interpretation dynamic analysis with manual results interpretation manual static analysis - source code automated static analysis - source code architecture or design review

Potential Mitigations

Phases:
architecture and design implementation system configuration operation
Descriptions:
• For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
• Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, consider using libraries with authentication capabilities such as OpenSSL or the ESAPI Authenticator [REF-45].
• Divide the software into anonymous, normal, privileged, and administrative areas. Identify which of these areas require a proven user identity, and use a centralized authentication capability. Identify all potential communication channels, or other means of interaction with the software, to ensure that all channels are appropriately protected, including those channels that are assumed to be accessible only by authorized parties. Developers sometimes perform authentication at the primary channel, but open up a secondary channel that is assumed to be private. For example, a login mechanism may be listening on one network port, but after successful authentication, it may open up a second port where it waits for the connection, but avoids authentication because it assumes that only the authenticated party will connect to the port. In general, if the software or protocol allows a single session or user state to persist across multiple connections or channels, authentication and appropriate credential management need to be used throughout.
• Where possible, avoid implementing custom, "grow-your-own" authentication routines and consider using authentication capabilities as provided by the surrounding framework, operating system, or environment. These capabilities may avoid common weaknesses that are unique to authentication; support automatic auditing and tracking; and make it easier to provide a clear separation between authentication tasks and authorization tasks. In environments such as the World Wide Web, the line between authentication and authorization is sometimes blurred. If custom authentication routines are required instead of those provided by the server, then these routines must be applied to every single page, since these pages could be requested directly.
• When storing data in the cloud (e.g., S3 buckets, Azure blobs, Google Cloud Storage, etc.), use the provider's controls to require strong authentication for users who should be allowed to access the data [REF-1297] [REF-1298] [REF-1302].